ECO 4401: Mathematical Economics Syllabus

Instructor:	Don Tawanpitak	Classroom:	MAT 112		
Email:	d.tawanpitak@ufl.edu	Class time:	T/R 11:45 AM - 1:40 PM		
Office hour:	On Zoom: T/R 1.50 - 2.50 PM				
	In-person: By appointment				

Prerequisites:Intermediate Microeconomics (ECO 3101) and Calculus I (MAC 2233)Textbook:Fundamental Methods in Mathematical Economics, 4th Edition byAlpha C. Chiang and Kevin Wainwright

1 Course Description

This course introduces students to the mathematical tools useful in economic analysis. Topics covered include linear model and matrix algebra; derivative, limit, and continuity of functions; partial and total derivatives; comparative statics; unconstrained optimization; constrained optimization with equality and inequality constraint.

2 Grading Policy

Grades are calculated as: Problem Sets 40%, Midterm 30%, Final 30%.

2.1 Problem Sets

There will be eight problem sets: five before midterm and three after midterm. Each problem set counts for 5 points toward the final grade. Students are encouraged to work in groups, but students must submit their problem sets individually. On the due date, the instructor will collect problem sets at the beginning of the class.

Because the problem sets' objective is to serve as practice questions, the instructor will weigh the score primarily on the degree of understanding and effort shown rather than the correctness. Thus, students are encouraged to show their work as much as possible.

The instructor expects students to get the full points (40%) from problem sets.

2.2 Midterm Exam

The midterm exam will be in class on Thursday, March 3rd. As a reading day, there will be no class on Tuesday, March 1st. Students who cannot take the exam on this date must notify the instructor 14 days in advance. A make-up exam is granted on a case-by-case basis.

2.3 Final Exam

The final exam is on Tuesday, April $26^{\rm th}$ from 7:30 AM - 9:30 AM.

2.4 Guidelines for Answering Problem Sets and Exams

- I. Readability: Students must ensure that their answers to the problem sets and exams are readable to the instructor. Unreadable answers will not be graded.
- **II. Answer the question:** Students should read questions carefully, answer everything that each question asks for, and attempt to answer all questions for some partial credits.

3 Grading Scale

•	A :	94.0 - 100.0	• B- : 79.0 - 81.9
•	A- :	91.0 - 93.9	• C+ : 76.0 - 78.9
•	B+ :	88.0 - 90.9	• C : 70.0 - 75.9
•	В :	82.0 - 87.9	• F : < 70.0

4 Course Outline

Introduction

Lecture 1 (Jan 6^{th})	:	Syllabus
Lecture 2 (Jan 11^{th})	:	Equilibrium Analysis in Economics (Chapter 3)

Part 1: Linear Models and Matrix Algebra

Lecture 3 (Jan 13^{th})	:	Matrix Algebra I (Chapter 4)
Lecture 4 (Jan 18^{th})	:	Matrix Algebra I (Chapter 4)
Lecture 5 (Jan 20^{th})	:	Matrix Algebra II (Chapter 5)
Lecture 6 (Jan 25^{th})	:	Matrix Algebra II (Chapter 5)

Part 2: Differentiation and Comparative Statics

Lecture 7 (Jan 27^{th})	:	Comparative Statics (Chapter 6)
Lecture 8 (Feb 1^{st})	:	Rules of Differentiation (Chapter 7)
Lecture 9 (Feb 3^{rd})	:	Rules of Differentiation (Chapter 7)
Lecture 10 (Feb 8^{th})	:	Comparative Statics of General-Functions Models (Chapter 8)
Lecture 11 (Feb 10^{th})	:	Comparative Statics of General-Functions Models (Chapter 8)

Part 3: Optimization Problems

Lecture 12 (Feb 15^{th}) :	Optimization - Single Choice Variable (Chapter 9)
Lecture 13 (Feb 17^{th}) :	Optimization - Single Choice Variable (Chapter 9)
Lecture 14 (Feb 22^{nd}) :	Exponential and Logarithmic Functions (Chapter 10)
Lecture 15 (Feb 24^{th}) :	Exponential and Logarithmic Functions (Chapter 10)

March 1^{st}	:	Reading day
March 3 rd	:	Midterm Exam
		——————————————————————————————————————

Part 3: Optimization Problems (continued)

Lecture 16 (Mar 15^{th}) :	Optimization - Two or More Choice Variables (Chapter 11)
Lecture 17 (Mar 17^{th}) :	Optimization - Two or More Choice Variables (Chapter 11)
Lecture 18 (Mar 22^{nd}) :	Optimization - Two or More Choice Variables (Chapter 11)
Lecture 19 (Mar 24^{th}) :	Optimization with Equality Constraints (Chapter 12)
Lecture 20 (Mar 29^{th}) :	Optimization with Equality Constraints (Chapter 12)
Lecture 21 (Mar 31^{st}) :	Optimization with Equality Constraints (Chapter 12)
Lecture 22 (Apr 5^{th}) :	Optimization with Inequality Constraints (Chapter 13)
Lecture 23 (Apr 7^{th}) :	Optimization with Inequality Constraints (Chapter 13)
Lecture 24 (Apr 12^{th}) :	Optimization with Inequality Constraints (Chapter 13)
Lecture 25 (Apr 14^{th}) :	Optimization with Inequality Constraints (Chapter 13)
Lecture 26 (Apr 19^{th}) :	Optimization with Inequality Constraints (Chapter 13)

April 21^{st}	:	Reading day
April 26 th	:	Final Exam